
COLORADO (Mliv BO~~DER DEPT Off MATHEMATICS
ON QUALITATIVE

I I
______ 

END
OAfl

7 —~19

I II

I



I .0 ~ IIHI~ ~~~5

______ 

L~ U~I~ 1111122I 
=

~ N~ 10112.0

I}IH~I .25 fiffi 1.4 flfl~
MICROCOPY RESOLUTION TEST CHART



-~

— .

I 

Unclassified
SECURITY CI.ASSI YICAT ION OF THIS PAGE B’.m, 0. EnI d) _________________________________

REPORT DOCUMENTATION P E , ..~~ BEFORE COMPLETING FORM

~~~rl6l,5.l-A-M!’ 
~~~~~~~~~~ 

VT CE~~~~ N~~~~. REC,p rNrs CATALOG NUMBER

• 4 TI~~~ET~ d SubIIU.) S. OF REPORT S PERIOD CDV~ RE~ -~..

( ~~~[øn Qua l itative Lanche~trian Models of 
Techn i ca l 

~~~~~~~ /
• 

— Combat Incorporating Logistics 6. PER ÔR,.INC.ORG.REPORT NUM8ER

• 

~~~IuO 7~~~~~~~~ tHOII(.) 

— 

S C O N TRA CT OR GRANT NUNBER(a)

..f.~ ~~~~~ 
./Mavbeej j~ / i~!I*

B. PERFORMING ORGANIZATION NAM E AND ADDRESS SO PROC.RA M EL EMENt PROJ ECT . TASK

Un i vers i ty of Colorado
Boulder , Colorado

• C SI .  CONTROLL ING OFFICE N A M E  AND A DDRESS /‘~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
.. ‘

~~~
• 7

U. S. Army Research Office ~/ / May 79 /
P. 0. Box 12211 c~~ NUMWES~ G~~

’PAGES

Research Triangle Park , ..C 27709 23
t4. MONITOR ING AGENCY N A M E  I ADDRESS (II di t from C ’nt ro •) IS. SECL R I T Y  CLASS. (of (hi . r.por()

Unc ’issified
IS. DEC.LA SSIFICATI ON/OOWN GRA DSNG

SCH~~OULE

IS. DISTRIBUTION STATEMENT (of f f 1 .  R.por()

Approved for public release; distribution unlimited. E~ D C
~~ fl12~~

_______________________________________________________  

L)~ JUN 4 1919
I?. DISTRIBUTION STATEMENT (of ffi~ .b.t,.cf mitered In ~ ioek 20. II di?I.rmit I,om R.pott)

LL.I ~~ SUPPLEMENTARY NOTES

The view, ~pinion~ , and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Arir~r
position , policy , ~r decision , unless so designated by other documentation .

~~~~~~ IL K EY WORDS ( Conllnu. on rev.,., aid, it n.c...my mid id.ntity by block numb. ,)

~~~~ Logistics
Models of mi litary combat
Lanchestrian models t 

~~~~~~ ~
-.• . . .

4 Diffe rential equations I U U
‘1 t igenvec tors

20. ABSTRACT (ConfInu. on r. ..,.. .Id. if n.c..., ry mid Id.ntity by block numb•r)

We initiate the study of a family of models of military combat wh i ch include
classica l linea r Lanchestrian models as a special case. These models introduce
the additional concept of one or severa l col umns providing supplies to one of
the forces. It Is assumed that the other force is defending an already supplied
position or is prepared only for a short campa i gn . The models are desi gned so a~to have solutions that are primari ly qualitative in character.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i$ DO 1 jAN 73 1473 EDITION Or I (iOV GS IS ORSOLETE . .  . .

_____ ______ _____ 

unclassified

~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ____ ~~~~~~~~~~~~~~~~~~ 14~ L,, ~~~~~~ 4



5#lp~~~T~~~~
T

TTT~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ . r. . 

- -

~~~~~~

.

:~

On Qualitative Lanchestrian Models of

Combat Incorporating Logistics.

John S. Maybee

Department of Mathematics

University of Colorado

Boulder , Colorado 80309

This work was supported by a grant from the U.S. A rmy Research Office .

a

r ~
.

L
~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

-.-— . —



.
~~~

.w- -S-*~
S_

~
_ 

~~~~~~~

Abstract

We initiate the study of a family of models of military combat which

include classical linear Lanchestrian models as a specia l case. These

• models introduce the additional concept of one or severa l columns pro-

viding supplies to one of the forces. It is assumed that the other force

is defending an already supplied position or is prepared only for a short

campaign. The models are designed so as to have solutions that are pri-

marily qualitative in character. They have the form of a linear system

of differential equations = Au ÷ F(t) where u is a vector with

~~3 components , A is an m~Xm  constant matrix and F is a given

time dependent vector with m components. The differentia l equati ons

are to be solved subject to certain stopping rules. When we say that

the solutions are qualitative in character , we mean that the mathematical

form of the solution does not depend upon the magnitudes of the elements

of the matrix A but only upon the signs of these elements. We intro-

duce the concepts of upper and lower solutions which serve as bounds

for all positive solutions of the problem. We obtain detailed results

on the eigenvalues and eigenvectors of A and explicit representations

of the upper and lover solutions .

1~
1*

I
~~~~~ 

_ _ _ _  -~~~ - 

I 
-



Fr: - 

~~~
---.- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
_ _ _ _

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1. Formulation of the Models

In this paper we introduce a class of Lanchestrian models of com-

bat including logistic considerations and initiate the detailed analytic

study of them. It turns out that the analysis of such models falls

naturally into two parts, an analytic part in which we derive explicit

solutions and examine their fundamental properties and a geometric part

which provides valuable insights into the nature and behavior of solu-

tion trajectories. In order to keep this paper from becoming too lengthy

we restrict ourselves herein to the analytic portion of the analysis

reserving the geometric analysis for a subsequent paper.

Our models consist of two combat forces , an x - force either

occupying an already supplied position or carrying enough supplies for

a short (say a 30 day) campaign , and a y - force supplied by several

columns at the levels s~~,... ,s . We assume that the equations gover-

ning the combat have the form

-a
~

x - b
1
y - b

2
s
1 

- •~~~• - b~÷1
s + f(t)

~ -c1
x - a~y + g(t) (I)

= ck+lx 
- 5k+18k + r

k
(t) , 1 ~ k � p .

} • In equations (1) the dots denote derivatives with respect to time . The ~~.. Z~

coefficients a,, and a., represent losses in the x and y forces
V

not due to direct fire . They may be expanded to include such effects as

losses due to desertion , sickness, ar~I accidenta l injury as well as to

interdic tion by enemy fire power not itself subject to attrition . The

coefficents b
1 

and c
1 

are the usual attrition -rate coefficents

representing direct fire of the combat forces upon each other. The sub-

system arising when b
i 

c
1 

0 , 2 ~ k ~ 
p + I , has been studied by

C
’ . • • .

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~ ~.—•—•-$-.• . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~
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2

Bach , Dolansky, and Stubbs (1]

Our analysis includes, of course , complete results for this subsystem.

The coefficients c . , 2 
~ 
j 
~ 

p + 1 , represent the portion

of the direct fire of the x - force used to interdict the supplies of the

y - force. We assume that supplying the y - force at an adequate level

enhances his ability to inflict casualties upon the x - force. The coef-

ficients b
2
,...,b

~,+1 
capture this effect. The coefficients a2,~~

..,

represent losses to the supply columns not due to direct fire by

the x - force. They m a y be expanded to represent the effects of equip-

ment breakdown, adverse weather conditions or terrain , as well as losses

to fire power not itself subject to attrition . Finally the nonhomogene-

ous terms f(t), g(t), r
k
(t), 1 ~ k � p , represent reinforcements.

The system (1) is to be valid only for nonnegative func-

tions x, y, 8
k’ 

I ~ k ~ 
p , which are subject to certain stopping rules

furnishing cx~ditions under which one force or the other must disengage

from combat. We consider two types of stopping rules.

Type 1 stopping rules: There exist constants ~ > 0 .y � 0 , c~ > 0

I 
~ 
j 
~ 

p , such that the y - force must disengage if either

y~~~~ (2)

or 

1~~~j~~~p

and the x - force must disengage if

x~~~.y .  (4)

Type 2 stopping rules: There exists ~ > 0 such that the y - force

must disengage if either (2) holds or

.
~~~~~~~~ ~~~~~~~ .~~~ .—~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~ 

—
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2 2 1/2 - ‘

y > ~(a + ... + ~~
) (5)

J and the x - force must disengage if (4) holds.

The condition (2) with B > 0 is included to avoid the

paradoxical situation which would arise if y = 0 and at least one

> 0 . Then we would have the x - force suffering losses inflicted

by supplies alone.

The conditions (3) insure that the y - force is supplied

• at an adequate level. They may be regarded as the supply requirements

when the several supply columns are furnishing different mixes of sup-

plies. The condition (5) should be applied to the case where each

supply column is furnishing approximately the same mix of items . Finally

• the condition. (4) is an obvious stopping rule.

In addition to the stopping rules we have the initial con-

ditions x — x0
, Y — Y0~ 

5
j 

— at time t = 0 where all initia l

values are positive and

0 < B < y 0
‘ ‘j 5j o ~ ~~ I � (6)

O~~~.y < x0

L
if stopping rules of type I apply , and I -

~

• 1 0 < ~ < ~ ~~~~~ 
4 5~o) h f 2  

~4 O~~~’ i < x
1$ 

0 J

if stopping rules of type 2 apply .

In most of our work we shall be concentrating on results

• that are primarily qualitative in nature . This is important because

data regarding the magnitudes of the coefficients in the system (1) is

~~~~~~~ ~~~~~~~~~~~~~
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either nonexistent or varies over such a large range of values that one

must conclude either that it is unreliable or should be interpreted as

• stochastic. Thus we shall be interested in results which depend only

upon the fact that the coefficents are either positive or zero , but

which do not depend upon their magnitudes. Unfortunately , not all ques-

tions one might wish to ask about solutions are independent of the magni-

tudes of the coefficients. Nevertheless a remarkable number of properties

of solutions are qualitative in character.

• From the system (1) we may derive a second closely related

system in the following way. Since we are concerned only with positive

solutions of (I) , let us introduce the numbers

max
l�k�p+l ‘

and

a mm a
l�k~p+l

Then

� -a~x - b
1y0 

- b
2
a
1 - ... - b~,~1

s + f ( t )

~ -c1
x - sy + g ( t )  ,

~~ 
- 

~
8k 

+ r
k
(t) , I S k s p

and

~ -a
0
x - b

1y0 
- b

2 s1 - ... - b~~1s + f (t )  ,

� -c
1
x - ly + g ( t )  ,

� _ C
k+l

X - as k + rk
( t)  , I � k 

~

It follows that positive solutions of the system

_ _ _ _ _ _ _  ______  __ 

* ~~~~~~~~~~~~~~
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x = -a 0x - b
1
y
0 

- b
2
s
1 - ... - b~~1

s ÷ f(t)

= -c 1x - ay + g ( t )  (8 )

• 
8k ck+lx - as

k 
+ r

k
(t) , 1 � k 

~ 
p

furnish upper bounds for positive solutions of the system (1) when

a — a and lover bounds for positive solutions of the system (1) when

a I . It is therefore of obvious importance ~ carefully study pro-

perties of positive solutions of the system (8)

• The system (I) (and , of course , also the system (8)) has con-

stant coefficients. It follows , therefore , that the analytic forms of

solutions are completely determined by the eigenvalues and eigenvectors

of the coefficient matrix A . In section 2 we show how to determine

the multiplicities and the signs of the eigenvalues of this matrix . Our

results are complete and detailed. We also completely detail the struc-

ture and properties of the corresponding eigenvectors . Generally speaking

all of these results are independent of the magnitudes of the elements

of the matrix A . The behavior of the largest eigenvalue of A , which

is always simple , is an exception because it can be positive , negative ,

• or zero depending upon the relative magnitudes of the elements of A

Thus we can obtain both stable and unstable solutions of the system (I)

in various cases. The system (8) also exhibits the same possibilities.

Section 3 is short and suimnarizes how solutions are explicitly

constructed using the eigenvalues and eigenvectors of A . We do this

both for the homogeneous and for the nonhomogeneous case . This section

rea lly consists of the application of well-known results to the present

prob lem.

• ,~ . • In section 4 we explicitly construct the solution of the system

(8) . For this specia l case the eigenvalues can be calcula ted as

I w .5- .-~~ ~~~~~ 
. 

~~., ~~~~~~~~~~ _________________
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functions of the elements of A . This enables us to construc t the

fundamental matrix of A and its inverse . Rather simple analytic

expressions are thus derived both for the solution of the homogeneous

system and for the nonhomogeneous system.

In this paper we do not attemp t to examine in detail the role

• p layed by the stopping rules. In a subsequent paper we will show how

the stopping rules can be interpreted geometrically as boundaries of

surfaces which contain the solution trajectories.

2. The Matrix of the System

Let us set z (x ,y,s1,” ,5)
T 

and defir~ the matrix

• 
•
~ A [_a0 

-b
1 

-b
2 

... -b~~~~1 . (9)

-a1 
0 ... 0

-c2 
0 -a~ 0

0 0

Then the system (1) can be written in the form

z = Az + F(t) (Ia )

whe re

• F(t) (f(t),g(t), r1
(t),...,r ( t)) .

Obviously the evolution of the solution of system (I) or (Ia) is •
•

de termined by the properties of the (p+2) X (p+2) matrix A and

the initial conditions. In this section we investigate the properties

of A .

I The matrix A belongs to the class (see (2~) which is a

~ L .. ~~~~~~~  • .~ _ _ _ _ _ _ _ _ _  

A~~.. — ~~~~~~~~~~~~~~~~~~~~ a—— ~~~ ~~~~~~~~~~~~~~~~~~~ k I ~ ~~~~~ 
.~i.i.i. ~~ ~~~~~~~~~~~~~~~ ~
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qualitative ly determined class of matrices and , since symmetrically placed

• elements have the same sign, the matrix can be symtnetrized (see [3]). In

fac t , for the diagonal matrix

= diag[1,(b
1
/c
1)~~

2
,(b2

/c
2
)
1
~
2
,.. .

we have S(A) D+
1AD
+ 

a matrix of the form

r 1/2 1/2 1/2S(A ) = -a0 
-(b

1
c
1) -(b

2
c
2
) ... _ (b~,÷1

c~÷1)

1/2
- -(b1

c
1) -a1 

0 •.. 0

• 
- (b

2
c
2)
’’2 0 -a

2 
•.. Q

1/2
-(b~~ 1

c
1,~1

) 0

Thus the matrix A is simi lar to a symmetric matrix , hence it has real

eigenva lues and eigenvectors and is similar to a diagona l matrix.

We shall investigate more closely the etgenva lues of A . To

this end note tha t

p+l p+l p-fl

• det(XI -A) = iT (k+a i
) - ~ b 4c iT ( X + a ) . (10)

i 0  1=1 ~ i=lr •

We now parallel the development presented in the paper (4 1 (see also (5]).

Suppose there are k distinc t values among the numbers ~~

1 s i s p + 1 , which we take to be .
~~ ,~~ in increa sing order and

4 suppose further that these occur with multiplicities m1,” ,m.~ res-

pectively where obviously we must have m
1 

+ “~~ + m~ p + 1 . (Note

that k — p + I is a possible value in which case there are no repeti- •

tions among the numbers a
~ 

, I S I S p + 1 .) From the righthand side 
• -

k r n - I
of (10) we can factor out U + i  ) , hence -i is an

I— i

1$
_ _ _ _  

_ _ _ _ __ _ _ _  

_ _ _ _ _  

.5

A _ L . ~b~ ~~~~~~~~~~~~~~~~ 

- - _ _ _ _ _ _ _
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eigenvalue of A of multiplicity m
1 

- 1 . Now divide det(XI - A) by
k
flix+~

) to obtain
i—I

k d
det(XI -A) 

X + a
0 

- = d (\) + a
0

j—1

i=1

where
• k d

• d(X) X -  

~~‘ ~~• j=1 j

• and d is the sum of the m values of b~c associated with I.
I I ~L i  3

Clearly , the eigenvalues of A not found among the a
1 

, I � j  � k

are going to sati sfy

d(X) -a
0 

. (11)

Let us plot d(X) against X . Clearly, d(X) is asymptotic to

each of the vertical lines X = , I � j  ~ k . Moreover , we have

k d

2 > 0
j=l (X+1

1
)

hence d is an increasing function of X wherever it is defined.

Also d(0) < 0  if all > 0  and d(0) is not defined if = 0 , 4
A

d -, ~ as )~, -. ~ and d -‘ -~~ as 
~~ 

-, -
~~~ 

. It follows tha t the graph

is as shown below .

, •t
*1
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1 1 1/ /
Figu re 1

(In the case where 0 the vertical axis is a vertica l asymptote.)

We see tha t the k + I roots of (11) , denoted by 
~~~~~

,. ~~~~ satisfy

the inequalities

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(12)

It follows that the p + 2 eigenvalues of A are divided into two

• groups as follows:

I. There are p + 1 - k eigenvalues consisting of m~ - 1 values

equa l to -I~ , I S I S k .

I I .  There are k + 1 eigenvalues ~ , 1 � S k + 1 , which are

simple and satisfy (12) .

The first group can be empty (the case k = p + I ) but there are

always at least two elements in the second group. In the case k = 1

wher e a1 = ... a
r,+l 

a
1 , the sequence of eigenva lues has the form

• 
• 

~~2
< h

l
<
~~~l

with 
~~ 

occurring p times.

_ _ _ _ _ _ _ _  

S

-

fl

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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It is important to observe that the largest eigenvalue 
~~ 

can

be posi tive , nega tive , or zero ( the ca se > 0 is illustra ted in t
figure 1). Obviously , if a

0 
= 0 or a

1 
0 then 

~l 
> 0 , but if

< 0 and a
0 

> 0 all cases can occur. Moreover , we can formulate

• the conditions for X 0 to satisfy (II) . In fact , d(O) =

• k d
- 

~~~ 
.1 

, so 0 is an eigenvalue if
i—i I

k d
a0 

~~~~~~~- — ~ (l3a)
j=1 j

if 
d

a
0
> , (13b)

1=1 1

and ~ > 0 if
1 k d

a
0 

< ~~ j-1 . (13c)
1—1 1

In the case where < 0 the matrix A is a stable matrix , otherwise

A is not stable. We shall see subsequently that the behavior of solutions

of the system (I) are not qualitatively different in the stable case

from their behavior in the nonstable case .

It is instructive to examine two specific examples of the class

of matrices A

- 
~
. Example 1. Consider the case p 1 so that (a

0
> O )

A -a
0 

-b
1 

-b
2~ 

.

-c
1 

-a
1 

0

• ‘4 -c 0 -a~~
- 

2

We have det(XI-A) — ( X + a 0) ( A + a 1) ( X + a 2 ) - b
1
c
1

( X + a
2

) - b
2
c
2
(X +a1

) .

Thus two basic cases can arise . Firs t , if a
1 

= a
2 

= a
1 , 

we have

álIIr3 ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
.
~ 

.— — — 
~~~~~~~~~~~~~~~~~ 

_________________
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b c +b c
det (XI-A) (X+~~1

)
2
[X+a

0 
- 

1 2 
. It follows that -~~~~~ is a

simple eigenvalue of A whose three eigenvalues satisfy

< a
1 

<

For = 0 , > 0 . Otherwise A is a stable matrix if

b
1
c
1

+ b
2
c
2

a~~> -
• V a

I

b c
1

+ b c
and A is not stab le if a

0 
~ I 

- 

2 2 Next if a
1 /~ 

a
2 

and
a1

min(a 1,a2) < 0 , we have

< -max(a1,a~) < 

~2 
< -rnin(a

1
,a
2
) <

Now A is a stable matrix if

b1c1 b.,c
a > 

L
+

L

O a1 a2

and A is no t stable if

b
1
c1 b~c

a � —~~~~+ — ~~——o 81 a
2

Note that multiple eigenvalues cannot occur when p 1

Example 2. Consider next the case p 2 (again assuming a0 
> 0 ).

We have,1; • A :~ :~ 
~
‘2 ~31 L

I

2 *2 
~

—

-

• so that
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det(XI-A) — (X+a
0

) ( X + a
1

) ( X + a
2

) (k + a
3

) - b
1
c
1
(~~+a

2
) ( k + a

3)

- b
2
c
2
(X+a

1
) ( X + a

3
) - b

3
c
3
(X+a

1)(X. +a2
)

There are now essentially three cases.

Case 1. a
1

a
2

a
3

a
1
> 0 .  Then

b c  + b c  + b c
det(XI -A) (X+a

1
) [X+a

0 
- 

1 1 2 2  3

and the eigenvalues of A satisfy

with -8
1 

occurring twice as an eigenvalue . A is stable if

a 
b
1
c
1
+b

2
c
2

+ b
3
c
3

0 a1

and nonstab le if a

b c + b c  + b c
a
0
5 1 1  

a
1

Case 2. Two of  the numbers a
~
, a2 ,  a3 are equal and the third diffe rent ,

• 
say , a

3 
= a2,a2 

= a~ . Now

2 
b
1
c
1

+ b
3
c
3 

b
2
c
2 

I

- 
-
‘det(XI-A ) = 

1
) ( X + A

2
) (X+a 0 

- — 

X + a 2 
- 

~. +a
1

• I and the eigenvalues of A satisfy

~3
<
~~~3 2 <

~~~l
<
~~l

with -i a simple eigenvalue. This time A is stable if and only if

b
1
c
1

+b
3
c. b

2
c
2a >  - + — --- .0 a1

(t~

~ 

fi
\~ ~~~~~~~~~~ ~ L ~~~~~~ 1~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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Case 3. The numbers a
~
, a2, a3 

are distinc t with , say, a
2 

< a
1 
~ a.~

• hence

det(XI - A) (X+a 1
)(X +a

2)(X+a 3
)(X+a0~~~

’
+~ 

- 
X +~~ 2 

-

so the elgenvalues of A satis fy

< a
3 

< < 8~~ < 

~ 2 
< a~ 

~~~~~~~~~

• b
1
c
1 

b
2
c
2 

b~c
• Now A is stab le if and only if a > — + + —i—

0 a1 
8

2 
a
3

1 Let us turn next to the eigenvectors of A . We must consider the

equation (XI-A)’~ = 0 where 
‘

~~ (u
l~~~~~

u
n
)T and X is an eigenvector

- • 
• of A . This system is

(X+a
0
)u1 

+ ~~~b1
u
1~ 1 

= 0 , (14)

c
1
u
1 + (X+a

1
)u. 

~ 
= 0 . (15)

F Suppose first that X , 1 5 j S k + I , then X + 8
j ~ 0 for

I ~ j S p + I , and from (15) we ob tain

C
u - u , 2 5 i � p + 2
t I~j

+ai_1 1

Choosing u
1 

= 1 , we ob tain the eigenvectors 5]

= (1,-~~~~ 
~ J

+a~~’ 
, _~+_~~~~~)

T , (16) 
LI

I s .1 ~ k + 1 . Nov c > 0 , 1 s 1. 5 p + 1 , hence the signs of the
i

• elements of the elgenvectors depend only upon the denominators of the

• ~~~~~~~~~~ •
; components. For j I we have + a~ > 0 for 1 S t S p + 1 ,

hence every component is negative except for the first component. Thus

u
1 

ha s the sign pattern (+ ,- , - , .~~~ , - )  . On the other hand for

_ _ _ _  

- 

_ _ _  

____
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5-

j — k + 1 we have 
~k+1 + a~ < 0 for 1 ~ i 5 p + 1 , so that tlk+l

has the sign pattern (+,+,+,...,+) . Finally , consider

I < j < k + 1 . We have ~~ + a~ ~ 0 for m
1 

+ .•~ + m~~1 values of

:1 a
~ 

and + a~ > 0 for m
1 

+ ... + m.~ values of , 1 s i s p + I

Thus each component of for which a~ has one of the values

will be positive and each component for which a
i 

has one

of the va lue s 
~j’
”
~~’~ k 

will be negative .

Next suppose A = for some 1 s i S k . Then m~ equations

of the system (15) reduce to the form c~u1 
= 0 , hence u

1 
= 0

The remaining p + 1 - m~ equations from this subsystem thus reduce to

-
• (_

i
+a

1
)u
1+1 

= 0 . Since (
~~i

+fla
I
) )

~ 
0 , it follows that the corres-

pond ing u
1 

= 0 . Finally the m
~ 

components which need not be zero

must satisfy (14 ) , wh ich becomes

p-fl

j~ 
b
1
u
1~~ 

0 (l4a)

because u
1 

0 . There are m
1 

nonzero terms on the lefthand side f

of ( 14a ) , and we can c learly obtain m~ - 1 linearly independent

solutions , hence m
1 

- 1 linearly independent eigenvectors . In fact ,

i t is easy to see each of these eigenvectors can be chosen so as to
. have exac tly two nonzero componen ts , one positive and one negative .

• In order to see exactly how the eigenvectors appear in the various

• possible cases let us find them in the special case p = 2. •:

Example 2 (continuation). Consider first the eigenvectors for case 1 ,

— a
2 

a
3 

— 1
1 

> 0 . Corresponding to and 
~2 

we have the

-. 

S eigenvec tors

u
1 

(1 , 
‘ 

, i 1,2 ,

~*‘  
_ _ _ _

Iii..& — 
~~~~~~~~~~ .~ .



‘— — —,•
~~~~~~~~~

-—- ,

~
.———-. . .  

~~~~~~-=~- ~~~~~~~~~~~~~~ ~~
- --• —

______________ - . • —. — —---.5—— .—.

15

whi le correspond ing to the doub le eigenvalue _ 8
l 

we have the eigenvectors

U
3 

= (0 ,b2,-b1, O)

u
4 

= (0 ,b
3
,O,-b

1
)

Turning nex t to the case 2 , we have the eigenvectors u1, u2, u3

given by

Cl 
C

2 
C

3 —u
1 

— (1, 
~~~~~1

’ 
~~i

-f~~2 

i — 1,2 ,3

and the eigenvec tor • 
-

(0 ,b3, 0,-b1)

Finally , in case 3 all eigenvectors u1, ” ,u4 have the form

u~ 
= (1, +a ’ ~~~+a2

’ ~~~~+a
3~ 

I s i � 4 .

We wish to point out that one of the consequences of our analysis

to this point is that multiple eigenvalues can occur only in the event

that there are two or more supply columns. This means tha t the matrix

A must be at least of order 4.

It is of considerable interest to understand how the eigenvalues

- 
- • of A vary when the elements of A vary. To this end consider firs t

the e lemen t a
0 

. It is c lear from figure 1 that increasing a
0 

w ill• I F • 
-
. -

decrease each of the eigenvalues 
~~ 

, 1 5 .1 ~ k + I . Thus we can

• 4 J

assert that

d
.1 < 0 , l s j s k + l  . (17)

On the other hand , it is also clear that the eigenvalue s -

~~~~~ 

, I Si -~k , S

do no t depend upon a0 , i.e.,

hi_A. ~~~~~~~~~~ ~~~-.. ~4 
~-.&S •SA.~ •~~~~~~~~~~~4 ~~~~—fl -•~ -.~ ~~~~~~~~~~~ 

-~~~~~~—---~- 
~~ 

—
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______ — 0 , 1 � i % k (18)da0

• Thus we have complete information regarding the dependence of t4ie eigen—

values upon the e lement a
0

3. Construc tion of Solutions

Now it is well known (see [61 , (71 ) that the solution of the homo-

• geneous system (la) can be written in the form

tAz( t ) = e z(0) ( 19)

where z(O) — (x ,y ,s ,“~~~ ~ )
T 

is the vector of initial values at0 0 1 0  p0

time t — 0 . The matrix exp (LA) is called a fundamental matrix of

the system. Let us determine the form of this matrix .

To this end let U be the matrix whose column vectors are the

eigenvec tors of A . Then

AU UJ

• where J is the Jordan matrix of A . Since A is similar to a

syimnetric matrix , J is a diagonal matrix with diagonal elements the

eigenvalues 
~~~~~~~~~~~~~~~~~~~ 

, and 
~~I’

”
’~~k 

, the latter occurring with

appropria te multiplicities. Thus, denoting the eigenvalues of A by

we have

4 . 3 — diag [X1, ...,x] S

• 1-
• Now we have

tA tUJU 1 tJ -le e Ue U ,

where

~~~~ ~L.L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -
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•
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tJ ~~~ ~e — diag(e ~~~~~~~ ,e ~ I

More explicitly , then

tA ~l
t 

~k+1~ ~~~ 8
k

t 
-l

• e = U diag(e , •
~~~~

• ,e ,e ~~~~~~~ ,e ~U

I t follow s, therefore , tha t (19) appears in the form

1
z(t) U diagle ~~ ,~ J U z(0) . (19 ’)

Let us examine this_ formula more closely. First consider the
akt

-. matrix U diag[e ~~~~~~~ ,e ] . Denote this ma t rix by U(t) . Multi-

p lica tion of any ma trix on the right by a diagonal matrix multiplies the

columns of the ma trix by the corresponding diagonal elements. Thus the

• 
• first k + 1 column vectors of U(t) are just the vectors

I•~i t
• 
• 

~~~~~ t c e ~~ C e~~ a

I ‘ 
~1

+a
1

’ ‘~~~ 1
+a

1

I s j  S k + 1 . The remaining columns of U have the form

• ~~~~~~( t )  = (~~~le i ,...,ak~~ 2e i ) (21)

• where exactly two of the numbers u~~ , 1 S j S p + 2 are d i f fe ren t

from zero and each a t is one of the numbers 
~~~~~~

‘ 

~
8k

fi Next we observe tha t U z(O) is a vector . Let us d~~ ote it by

w . Then tim formu la (19) can be rewrit ten as

I

4 z(t) — U(t)w . ( 2 2 )

Let us turn next to the solution of the nonhomogeneous system

z — A z + F ( t)  (23)

~ 
whe re f ( t ) ” ( f (t ) , g (t ) , r1(t ) ,  , r ( t ) )  As mentioned above we may I-S 

~~~~~~~~~~~~~
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think of the vector F as representing reinforcements. In the case of

the x and y forces this might be additional personnel , while for the

supply columns it might consist of vehicles or other equipment replace-

men ts. The genera l formu la for solving the sys tem ( 23) is

tA t (t-s)A
z(t) — e z(O) + e F(s)ds . (24)

• In view of the form which we have presented above for the fundamental

matrix of the system , we can rewrite (24) as

z ( t )  U( t ) v  + ¶‘ U(t — s)U 4F( s)d s  . (25 )
0

• It is evident from the formulas (22)  and (25) tha t we must

investigate the form of the matrix U 1 
. We shall not attempt to do

this for the most genera l case .
U

4. Upper and Lower Solutions

As was pointed out in section 1 the system (8) is of particula r

importance because its solutions for appropriate values of a can be

used to obtain both upper and lower bounds for all positive solutions

• of the system (1) . In this section we shall explicitly solve tim

system (8) .

Thus consider the ma t r i x  •

A o - 

~
:° 1:1
1

at; 
~~~~~~~~~~~~~~~~~~

The characteristic polynoaial of A
0 

is 
•

(~~~fr
_

-- -.5

_

-.
~~~~~~~~~~~~~~~~~~~~~~~

_  

~~~~~~~~~~~~~

, 
•.5

~~~~~~~

-
• • ’

~

• -

~~~~ 

— - . -

~~~~~

•

— --‘—-S. sS
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• 

• 

det(XI -A 0) (A+a)P[X
2 +(a0+a)X +aa~~~ó

2
]

• where 6 = ~~~b
1
c
1
)

/’2 
. The refore the eigenvalues of A 0 are

• A -a , p - times

a + a  2 1/

X = - 

2 +
2

a
0-a) +46 ]

~
and

- = 
0 

- ~ [(a 0~~a)
2 +4ä 2 J V2

Let us set

- =

a0 +a
0 = - ——-

so tha t the eigenva lues of A0 become

a

A = -a , p-time s

(26)

• Now the fundamental matrix corresponding to A
0 

is

u _ i  I 0 . . . 0  1 (27)
c1 C

1 
b 2 . . .  b~~ 1~

-
- 

~ +~~+a o-~~~~
j -b 1 . . . 0

I 
c
~~~l ~~p~fl ~ - 

1

t —

It is easy to show tha t det U — (_1)
~ 2br~

’
~ 

and one obtain sr4~

~~~~~~ _ _ _  

_ _ _ _ _ _  _ _ _

____— 
- 

-t
- L — As. ~~~~~~~~ ~~~~~~~~~~~~ ~~~ 5i•.~ A.~ ~~~~~~~~~
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• 
= _________  ~~ .a ...~~~~~~~ ..~~~

-I-1
2c(o— z+a) 2t 2€ 2€ 2€

6
2 b

i
2 c ( a + t + a )  2c 2€ 2€ 2€

0 - 

6~~ c
2
b
3 

c
2
b~~1

62b 1 6
2

b 1 6~ b 1

b
2
c
3 

6 3 c
3
b

1
1

62 b 1 6 2b 1 62b 1

0 
~~~~ b 2 c~~~1 b

3c~~~1 
-

— 

6
2 6

2 b 1 62b 1 6~ b 1

where we have defined

p+I
6

~~ 
b .c~ , 2 s j s p + I

i l,1,~j

Next let us define

p+l
b1y 0 + ~~ b

1
s
1 1 0

j 2

and compute the components of the vector v. After some calculations

one f inds

• I w . —i r~ 
V x - D 1

1 2€ L o — € + a 0 O~ ‘ 
S

1 ô2

~ = — r  x +D I2 2c ’~~~ + € + a  0 0 ‘

• 
— b

~~E~~
sk..2 O

+ c k..l6
2
DO1 ~ 3 5 k S + 2 .

• 

~~~~ 

With the vector v at hand we can write out the solution to

the homogeneous version of the system (8). It is
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•, 

• -
~~ 
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x(t) e0t(x 0 
cosh ct +~~((~~+a)x

0
-D
0
]sjnh € t )

c
1D0 - 

~ 
c
1 

(o+a)D
0 ~ 

c
1
D
0y( t) (y

0 
- 

2 
)e 8 

- 

T(x O~ ô
2 Ic° sthh ct ÷ _~

_
~_e

0t 
cosh € t , (28)

sk(t) 
= (sk ,O 

k+
~~O)e

8t 
- ~~~~(x0 + 

(
~~

+ a )D
0~~~~ 

Ct

I c
k÷lDO at

— • + 2 e cosh Ct , l � k S p

Now observe tha t the stable case occurs if and only if

aa
0

- 8
2
> 0. (29)

• But we also note that in any event a � 0, a < 0 , and € > 0 . Conse-

quently the analytic form of the solution (28) is the same whether or

not A
0 

is stable . This is attributable to the fact that only the sign

of the eigenvalue ~ a + € is affec ted by the change from the stable

to the unstable case . However, we also wish to call special attention

to the situation occurring when a — 0 . Then the solution will always

be unstable because (29)  reduces to .82 
> 0 which can never be

sa t i s f i ed .  •

Let us next write out the solution to the nonhomogeneous problem.

• To this end it is su f f i c ien t  to wri te  out the integra l terms appearing -:

in equation (25)  because these terms added to the corresponding terms

‘4 ii in (28) yie ld the entire solution .

Set = U
1F(s) . Then we have 

fi

W l 3~~ 0~~~+a
5 D 0(5)1 ,

“2 ~~~~~~~~~~~~~~~~~~~ 
,

- • S ~~~~~~~~~~~~~~~ • • 
- • - - - ~~~~~~~~~~~~~~~~~~ —.5-- • • ——kg5- - L.~ ~~~~~~~~~~~~~~ _____ .- i~~~~~ .. ____________
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— b~~[~ rk 2
(s)+ck l O

2
DO

( s)] ,

• 

• 

where
- p+l

• D0
(s) b

1
g( s) + )

~ b1r1 1 (s) . (30)
j 2

Now le t ( ( t ) ,~~~~( t ) ,
’

1
(t) ,~~~~” ,

‘ ( t ) )  denote the solution of the

nonhomogeneous system satisfying zero initial conditions . We then obtain

x(t) — 
t
~
S

f~~~~~~h c( t - 5 )  + [a ±a f ( )  - 

D
0

(s)  
c(t - s))ds , 1

— ~
t
(g(5) ~~~ D0

(s))e
_
~~

t
~~~ds

+ r:(~~Do(s)ea( t
~

5) c~ h c(t - a) -~~~[f(s) +a D0
(s) ] e~~~ t~~~ x

X sinh € (t—s)Jd s (31)

• s
k
(t) - 1 (rk

(s) 
k+l a ( t s) k+l ( t ) 

s)

- 
Ck+1If(s)+~~: D ( s) ] e  ( t s)

siflhC (t s)1 ds ,£

l � k � p .

Again because a ~ 0 , a < 0 , and € > 0 this portion of the

solution has the same form in both the stable and the nonstable case .

The formulas (28) and (31) provide the basic tools for any

• additional analytic analysis of the system (8). On the other hand , as
1

was pointed out in the introduc tion, the solutions we have obtained

provide upper and lower bounds for all solutions of the system (1).

-
- 

- 
These bounds will hold as long as the bounding solutions remain positive ‘1.

and do not violate the stopping rules. Since the bounding solutions

have the same initial values as the solutions we wish to bound , either

4 the upper bound or the lower bound may be expected to remain in force

Il.L ~~~~~~~~~~~~~~~~~ 
AA.I ~~L~~~~4 ~~~~~~~~~ ________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



23 

—

until the solution violates one c the stopping rules. In view of the

- fact that both bounding solutions have the same mathematical form we

expect that they will furnish reasonably close estimates of the actua l

solution. This is, of course , only a conjecture . We expect to examine

• more closely the behavior of the solutions of our model in a subsequent

• paper.

In view of the fact that our aim in this paper was to initiate

the study of models whose dependence upon the model parameters is

• primarily qualitative it is gratifying to observe that the upper and

lower solutions both have the same structure independently of the magni-

tudes of the elements of A as long as all of the numbers a~ , 0 ~ i 
~ p

+ 1 , b
i 

, c~ , 1 5 i S p + 1 , are positive . This is about the

• strongest qualitative result we could hope to ob tain. Moreover , the A

form of the solution in the case where a . � 0 , 0 S i S p + I is

also easily deduced from the above results.

1 1 :

t~ •l 
_ _ _ _ _ _ _
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